(**Pages : 3**)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

(CUCBCSS-UG)

Complementary Course

MAT 2C 02-MATHEMATICS

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Type)

Answer all twelve questions. Each question carries 1 mark.

- 1. Write an example for a sequence which has no upper bound.
- 2. Find the domain of the function $w = xy \ln z$.
- 3. Define the level surface of a function *f*.
- 4. State two path test for non-existence of limit.
- 5. If $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$.
- $6. \quad \frac{d}{dx} \sinh x = -----.$

7. Write $\tanh x$ in terms of exponential function.

8. Find
$$\lim_{n \to \infty} \sqrt[n]{n}$$
.

9.
$$\int \cosh 2x = -----$$

- 10. Find $\lim_{(x,y)\to(1,1)}\frac{x^2+2y}{3x-2}$.
- 11. Find $\frac{\partial}{\partial x}\sin 2xy$.

12. Define conditional convergence of a series.

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

13. Investigate the convergence of $\int_0^\infty e^{-x^2} dx$.

14. Show that $\lim_{n \to \infty} k = k$, where k is a constant.

 $(12 \times 1 = 12 \text{ marks})$

- 15. Find $\lim_{n \to \infty} \frac{\cos n}{n}$.
- 16. Find $\lim_{(x,y)\to(0,0)} \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$.

17. Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0).

18. Find $\frac{\partial f}{\partial y}$ if $f(x, y) = y \sin xy$.

- 19. Use chain rule to find the derivative of w = xy with respect to t along the path $x = \cos t$, $y = \sin t$. What is the derivative's value at $t = \pi/2$?
- 20. Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.
- 21. Show that if u is a differentiable function of x whose values are greater than 1, then

$$\frac{d}{dx}(\cosh^{-1}u) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx}$$

- 22. Graph the sets of points whose co-ordinates satisfies the condition $2\pi/3 \le \theta \le 5\pi/6$ (no restriction on r).
- 23. Find a polar equation for the circle $x^2 + (y 3)^2 = 9$.
- 24. Find the directrix of the parabola $r = \frac{25}{10 + 10\cos\theta}$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any **six** questions. Each question carries 5 marks.

25. Compare $\int_1^\infty \frac{dx}{x^2}$ and $\int_1^\infty \frac{dx}{1+x^2}$ with limit comparison test.

- 26. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ convergent or divergent.
- 27. Find the linearization of the function $f(x, y) = x^2 + y^2 + 1$ at (0, 0).
- 28. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x^2 + y^2$, x = r s and y = r + s.
- 29. Find the area of the region in the plane enclosed by the cardioid $r = 2 (1 + \cos \theta)$.

30. Show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ if $f(x, y, z) = e^{3x+4y} \cos 5z$.

- 31. Find the Maclaurin series for the function $f(x) = xe^x$.
- 32. Does series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ convergent.
- 33. Find the surface area generated by revolving the curves $x = t + \sqrt{2}$, $y = \frac{t^2}{2} + \sqrt{2t}$, $-\sqrt{2} \le t \le \sqrt{2}$ about y-axis.
 - $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any **two** questions. Each question carries 10 marks.

34. Find the length of the curve $y = \frac{1}{3}(x^2 + 2)^{3/2}$ from x = 0 to x = 3.

- 35. Find the points of intersection of $r^2 = 4 \cos \theta$ and $r = 1 \cos \theta$.
- 36. Find the critical points of $f(x) = x^{1/3} (x 4)$. Identify the intervals on which f is increasing and decreasing. Find the functions's local and absolute extrema values.

 $(2 \times 10 = 20 \text{ marks})$

Nam	e
Nam	e

(Pages : 3)

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2019

(CUCBCSS-UG)

Mathematics

MAT 2C 02-MATHEMATICS

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Types)

Answer all twelve questions.

- 1. Define a sequence.
- 2. Fill in the blanks : $\frac{d}{dx}\cosh^3(3x) =$ _____.

3. For what values of real numbers x, does the series $\sum_{n=1}^{\infty} \sin^n x$ converge ?

4. Fill in the blanks : The polar equation of the circle with centre origin and radius a is –

5. Find the n^{th} term of the sequence 2, -2, 2, -2 —

- 8. Write explicitly the ratio test for the convergence of the series $\sum_{n=0}^{\infty} a_n$.
- 9. State alternating series test of Leibniz.
- 10. Define $\frac{\partial}{\partial x} f(x, y)$ using limit.

11. The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ always converges to a_0 when x = --.

12. What do you mean by linearization of a function in two variables at a point. $(12 \times 1 = 12 \text{ marks})$

Turn over

13. Evaluate $\int_{1}^{1} \sinh^2 x \, dx$. Test the convergence of the integral $\int_{1-2x}^{\frac{1}{2}} \frac{1}{1-2x} dx$. State the non-decreasing sequence theorem. 15. Describe the level surface of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 1}$. 16. Graph the sets of points whose polar co-ordinates satisfy the condition $0 \le r \le 2$. 17. 18. Evaluate $\int \frac{1}{\sqrt{4+9r^2}}$ 19. Find $\tanh x$, if $\cosh x = \frac{17}{15}$, x > 0. 20. Show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ if $f(x, y) = \log \sqrt{x^2 + y^2}$. Find a cylindrical co-ordinate equation for the surface $x^2 + (y - 3)^2 = 9$. . 22. Find $\frac{\partial z}{\partial r}$ if z = x + 2y, $x = \frac{r}{s}$ and y = 2rs. 23, Find $\lim_{n \to \infty} \frac{n}{2n+1}$. 24. Write the Maclaurin series for $\sin x$. $(9 \times 2 = 18 \text{ marks})$ Part C (Short Essay Types)

Answer any six questions.

Krd

Find the length of the curve $y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}} - 1$ from x = 0 to x = 1. 25.

Find the limit of the function $f(x,y) = \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$ as (x,y) tends to (0, 0). 26. rd - x Kar

C 62623

Replace the polar equation $r = \frac{4}{2\cos\theta - \sin\theta}$ by equivalent Cartesian equation and the draw the graph in Cartesian form.

Find a power series for log (1 + x) and find the radius of convergence of that series.

Show that $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$.

Find the volume of the solid of revolution when the region between the parabola $x = y^2 + 1$ and the line x = 3 is revolved about the line x = 3.

31/ Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^n - 1}{4^n}.$

32. Find the radius and interval of convergence of the series : $\sum_{n=0}^{\infty} (-1)^n (2x-1)^n$.

33. Evaluate : $\int \frac{\cosh^4 \sqrt{x}}{\sqrt{x}} dx$.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Types)

Answer any two questions.

32. Show that the function $f(x,y) = \frac{2xy}{x^2 + y^2}$ when $(x,y) \neq (0,0)$ and 0, otherwise is continuous

everywhere except at the origin.

- 35. (a) Find the linearization of the function $f(x,y) = x^2 xy + y^2/2 + 3$ at (3, 2).
 - (b) Find the area of the region enclosed by the cardioid : $r = 2(1 + \cos \theta)$.
- 36. Find the area of the surface generated by revolving the curve $y = x^3/9, 0 \le x \le 2$ about the x-axis.

 $(2 \times 10 = 20 \text{ marks})$